Heat shock protein complex vaccines induce antibodies against *Neisseria meningitidis* via a MyD88-independent mechanism

Jia Xi Han, Garrett Z. Ng, Paola Cecchini, Yok Teng Chiong, Muhammad A. Saeed, Lisbeth M. Næss, Michael Joachim, Lucy E. Blandford, Richard A. Strugnell, Camilo A. Colaco, Philip Sutton.

A R T I C L E I N F O

Article history:
Received 3 August 2015
Received in revised form 14 January 2016
Accepted 2 February 2016
Available online 12 February 2016

Keywords:
Heat shock protein
Heat shock protein complex vaccine
Neisseria meningitidis
Meningitis
Neisseria lactamica

A B S T R A C T

Background: *Neisseria meningitidis* are common colonizers of the human nasopharynx. In some circumstances, *N. meningitidis* becomes an opportunistic pathogen that invades tissues and causes meningitis. While a vaccine against a number of serogroups has been in effective use for many years, a vaccine against *N. meningitidis* group B has not yet been universally adopted. Bacterial heat shock protein complex (HSPC) vaccines comprise bacterial HSPs, purified with their chaperoned protein cargo. HSPC vaccines use the intrinsic adjuvant activity of their HSP, thought to act via Toll-like receptors (TLRs), to induce an immune response against their cargo antigens. This study evaluated HSPC vaccines from *N. meningitidis* and the closely related commensal *N. lactamica*.

Results: The protein composition of *N. lactamica* and *N. meningitidis* HSPCs were similar. Using human HEK293 cells we found that both HSPCs can induce an innate immune response via activation of TLR2. However, stimulation of TLR2 or TLR4 deficient murine splenocytes revealed that HSPCs can activate an innate immune response via multiple receptors. Vaccination of wildtype mice with the *Neisseria* HSPC induced a strong antibody response and a Th1-restricted T helper response. However, vaccination of mice deficient in the major TLR adaptor protein, MyD88, revealed that while the Th1 response to *Neisseria* HSPC requires MyD88, these vaccines unexpectedly induced an antigen-specific antibody response via a MyD88-independent mechanism.

Conclusions: *N. lactamica* and *N. meningitidis* HSPC vaccines both have potential utility for immunising against neisserial meningitis without the requirement for an exogenous adjuvant. The mode of action of these vaccines is highly complex, with HSPCs inducing immune responses via both MyD88-dependent and -independent mechanisms. In particular, these HSPC vaccines induced an antibody response without detectable T cell help.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Neisseria is a large genus of gram-negative, aerobic diplococcal bacteria that colonize various mucosal surfaces in a range of animals. The majority of *Neisseria* species are typically harmless commensals, such as *Neisseria lactamica* which colonize the human nasopharynx [1]. A few however, are significant pathogens, including *Neisseria meningitidis* which also occupies the same nasal niche. *N. meningitidis* is a common colonizer of humans, with up to 10% of individuals carrying this organism with no ill-effect. In a small proportion of those infected however, and for reasons that are poorly understood, *N. meningitidis* can turn into an opportunistic pathogen invading the tissues and disseminating to become a major cause of meningitis or septicaemia [2]. The pathogenic effects of *N. meningitidis* infection are far more prevalent in children.

http://dx.doi.org/10.1016/j.vaccine.2016.02.001
0264-410X/© 2016 Elsevier Ltd. All rights reserved.
N. meningitidis is separated into serogroups based on its polysaccharide capsule; 13 have been identified with A, B, C, X, W135 and Y being those most commonly associated with disease [3]. A highly successful vaccine that induces antibodies against many of these major serogroup polysaccharides has been available for over 10 years, having a major impact on reducing meningococcal disease [4]. Due to similarities between N. meningitidis type B and human polysaccharides, it was not possible to develop a similar vaccine against this serogroup. An aluminium hydroxide adjuvanted protein-based type B vaccine recently become available [5,6], although this vaccine has not yet been universally adopted internationally. There thus remains a need for an effective and economical vaccine against N. meningitidis to protect against meningococcal disease.

Proteomic, genetic and immunological analyses have indicated considerable similarity between N. lactamica and N. meningitidis antigenicity [7–9], and there is evidence that N. lactamica colonisation can provide some protection against N. meningitidis infection [10], possibly either by competing for colonization sites or via the induction of cross-reactive antibodies [11]. This has resulted in N. lactamica being studied as a potential vaccine tool for inducing protective immunity against N. meningitidis [9,12–14].

Heat shock proteins (HSPs) are highly conserved molecules, grouped into families, mostly based on their molecular weight and sequence homology. Main family members include HP90, HPV70 and HSP60 in mammalian cells, while in bacteria HSP60(also called GroEL) and HSP70(DnaK) are generally the most prevalent forms. The predominant role of HSPs is to serve as chaperones, binding and providing stability to cytosolic proteins, particularly during folding and unfolding. However, HSPs also serve a number of other functions, including the ability to act as a link between the innate and acquired immune systems, for example, by delivering antigens for immune presentation and acting as damage associated molecular pattern (DAMP) molecules that can activate Toll-Like receptors (TLR) [15]. HSP-induced innate immune signalling has been particularly linked with the activation of TLR2 and TLR4 [16].

The enrichment of HSP from bacteria along with its bound protein cargo (termed the HSP Complex; HSPC) provides a source of immunogen that, because of the intrinsic immunostimulatory activity of the HSP and the range of antigenic molecules it is associated with, can potentially produce an effective vaccine without requiring the addition of an exogenous adjuvant [17–19]. While the mechanism of action of such non-exogenous adjuvanted HSPC vaccine formulations was predicted to be via HSP activation of TLR2 and/or TLR4, this has not previously been experimentally confirmed. In this study, we characterize and compare the antigenic cargo of HSPC from closely-related commensal (N. lactamica) and pathogenic (N. meningitidis) nasal-colonizing Neisseria seria species and use these formulations to examine the importance of TLR activation in the immune response to HSPC vaccination.

2. Materials and methods

2.1. Preparation of Neisseria HSPC

HSPCs from N. lactamica strain Y92/1009 or N. meningitidis strain H44/76 were prepared essentially as described [20]. Lysed bacteria (using a Triton X-100 solution; 40 mM Tris, 1 mM MgCl₂, 20 mM NaCl, 0.5% Triton X-100, pH 8.0), were centrifuged at 13,000 rpm, passed through a 0.2 μm filter, and 10 mg of clarified lysate loaded onto a 5 mL ion exchange column (Capto Q, GE Healthcare, Uppsala) at 0.5 mL/min. HSPCs were eluted using a high salt buffer (40 mM Tris–HCl pH 8.0 containing 300 mM NaCl and 0.5% Triton X-100).

Fractions were analysed for protein concentration (Bradford assay) and HSP60 content by western blot using the anti-HSP60 antibody SPA-875 (Stressgen Bioreagents, Ann Arbor, MI, USA). The final vaccine comprised pooled fractions containing most HSP60, sterile filtered (0.2 μm filter) and diluted to 500 μg/mL in pH8.0 buffer containing 40 mM Tris, 1 mM MgCl₂, 300 mM NaCl and 0.1% Triton X-100.

The reduction of contaminating neisserial lipopolysaccharide (LPS) from N. lactamica HSPCs was performed using an EndoTrap HD kit (hyglos, Charleston, USA). LPS levels in the HSPCs used in this study, as quantified by Endosafe®–PTSTM (Charles River, Wilmington, Mass, USA), were determined to be 14,155 EU/mg (N. lactamica HSPC), 66 EU/mg (N. lactamica HSPC–reduced) and 19,679 EU/mg (N. meningitidis HSPC).

2.2. Proteomic analysis of Neisseria HSPC

For proteomic analysis, proteins were denatured in urea (Life Technologies, Carlsbad, USA), reduced with 10 mM TCEP (Pierce, Rockford, IL, USA), alkylated with 55 mM iodacetamide (Sigma-Aldrich, St. Louis, USA) and digested with sequencing grade modified trypsin (Thermo Scientific Pierce) overnight at 37°C. Peptides were acidified with 1% formic acid (Sigma-Aldrich), purified through solid phase extraction with Oasis HLB cartridges (Waters, Milford, USA) and freeze-dried before analysis by liquid chromatography–tandem mass spectrometry (LC–MSMS) as previously described [17]. Data analysis was carried out using Proteome Discoverer (Thermo Scientific version 1.4) with the Mascot search engine (Matrix Science version 2.4) against the Uniprot database. Search results were set to a maximum of 1% false discovery rate (FDR), one missed trypsin cleavage, and text-filtered for Neisseria. Proteins were positively identified if they contained at least two unique peptides in at least two of three sample replicates. Percentage molarity was calculated based on the exponentially modified protein abundance index [21].

For protein visualization, 5 μg HSPC was compared with 5 μg lysate on Coomassie Blue stained SDS-PAGE gels as previously described [22].

2.3. Cell stimulation assays

HEK293 cells and splenocytes from C57BL/6, Th2+/− or Tlr4−/− mice [23,24], were cultured in DMEM (high glucose) or RPMI 1640 respectively both containing 10% foetal calf serum, penicillin, streptomycin, glutamine (Life Technologies) and 2.5 μg/mL amphotericin B (Sigma-Aldrich). HEK293 cells expressing TLR2 [25], were kindly provided by Dr Ashley Mansell (Monash Institute of Medical Research). Cells were stimulated with 5 μg/mL N. lactamica lysate or Neisseria HSPC vaccine, while controls were cultured in media alone, or stimulated with the TLR4 ligand ultrapure LPS at 100 ng/mL, or the TLR2 ligand Pam3CysSerLys4 (P3C) at 50 ng/mL. (Invivogen, San Diego, CA, USA).

2.4. Evaluation of cytokine levels

Cytokine concentrations were determined by enzyme linked immunosorbent assay (ELISA), 96-well Maxisorp (Nunc, Roskilde, Denmark) coated with purified anti-mouse MIP2 (100 ng/well), IL-10 (200 ng/well), TNFα (40 ng/well),R&D Systems, Minneapolis, MN, USA), IL-6, IL-13, IL-17A (50 ng/well), ebioscience, San Diego, CA, USA), IFNγ (100 ng/well),BD Biosciences, San Jose, CA, USA), or anti-human IL-8 (200 ng/well) R&D Systems) at 4 °C overnight in bicarbonate coating buffer, pH 9.6. Plates were blocked with 1% BSA (Sigma-Aldrich) in PBS (blocker buffer) for 1 h prior to addition of samples in duplicate at 4 °C overnight. Captured cytokines were then labelled with biotinylated anti-mouse MIP2 (3.9 ng/well), IL-10
(2.5 ng/well), TNFα (15 ng/well) [R&D Systems], IL-6 (25 ng/well), IL-13 (25 ng/well) IL-17A (25 ng/well) [eBioscience], IFNγ (50 ng/well) [BD Biosciences] or anti-human IL-8 (1 ng/well) [R&D Systems] in blocker buffer for 1 h prior to the addition of 50 μL horseradish peroxidase-conjugated streptavidin (Pierce) 1/5000 in blocker buffer for 30 min. Colour was developed with 100 μL of TMB solution prepared as 1% of 10 mg/mL TMB (Sigma-Aldrich) in DMSO and 0.006% hydrogen peroxide in phosphate-citrate buffer, pH 5.0, and the reaction stopped with an equal volume of 2 M sulphuric acid prior to reading absorbance at 450 nm. Sample concentration was determined against a standard curve of recombinant cytokine (same manufacturers as antibodies).

2.5. Mouse vaccination experiments

Animal experimentation was performed under institutional guidelines and with approval from The University of Melbourne Animal Ethics Committee. Groups of age-matched, C57BL/6 or MyD88−/− mice (Walter and Eliza Hall Institute, Melbourne, Australia) [26], were injected subcutaneously with either 100 μg of HSPC (vaccinated) or an equal volume of sterile phosphate buffered saline (controls). Mice were vaccinated twice, four weeks apart, then euthanized and tissues collected for analysis one week after the second immunization.

2.6. Evaluation of serum antibody responses

Blood was collected by cardiac puncture and left to coagulate prior to collection of sera. Levels of specific antibodies were quantified by ELISA. Maxisorp immunoplates (Nunc) were coated with 5 μg/well of N. lactamica lyase at 4 °C overnight in bicarbonate coating buffer, pH 9.6. Plates were blocked for 1 h at room temperature then 1/20 serially diluted sera in blocker added in duplicate for 1 h at room temperature. Captured antibodies were labelled with 4 ng/well horseradish peroxidase-conjugated goat anti-mouse immunoglobulin G (IgG) (Pierce), 8 ng/well horseradish peroxidase-conjugated goat anti-mouse IgG1 (Southern Biotech, Birmingham, AL, USA) or 10 ng/well horseradish peroxidase-conjugated goat anti-mouse IgG2c (Immunology Consultants Laboratory, Portland, OR, USA) in blocker for 1 h. Colour was developed and read as above prior to calculation of endpoint titres. Serum bactericidal activity against N. meningitidis was performed as previously described [27].

2.7. Statistics

For statistical analyses, all data were log-transformed then compared by analysis of variance (ANOVA) with Dunnett’s post-hoc analysis, using SPSS software, version 21.0.

3. Results

3.1. Characterization of N. lactamica HSPC

N. lactamica and N. meningitidis HSPCs were made using an optimized and standard procedure [20], originally developed to produce and analyse HSPCs from other bacteria [17]. The composition of N. lactamica and N. meningitidis HSPCs were examined by proteomic analysis and the twenty most abundant proteins are listed in Table 1. The antigenic compositions of the HSPCs from these two nasal Neisseria species were notably similar. In addition to the expected HSPs (HSP60 and HSP70), many of the most highly abundant Neisseria HSPC components were ribosome-associated proteins.

3.2. TLR2 and TLR4 signalling in the cytokine response to N. lactamica and N. meningitidis HSPC

Some HSPs induce an innate immune response by activation of TLR2. We therefore examined whether Neisseria HSPC were also capable of stimulating a response via this receptor. Culture of HEK-293 cells that express TLR2 with HSPC from N. lactamica or N. meningitidis induced the secretion of IL-8, in contrast to control HEK-293 cells which were unresponsive to both HSPC and TLR2 activation (Fig. 1). No response to LPS was observed for any cells, demonstrating that the HSPC induced secretion of IL-8 was not related to contaminating endotoxin. Hence HSPC from both neisserial species could trigger an innate immune response via TLR2.

To extend this observation, as other HSP have been shown to activate both TLR2 and TLR4, we stimulated splenocytes from wild-type, Tlr2−/− and Tlr4−/− mice with N. lactamica or N. meningitidis HSPC. While neither HSPC induced secretion of anti-inflammatory IL-10, both induced the secretion of innate proinflammatory cytokines (IL-6, MIP2 and TNFα) equivalent to or greater than the levels induced by the positive controls (LPS for Tlr2−/− cells and P3C for Tlr4−/− cells) (Fig. 2). It was notable that the cytokine response of Tlr4−/− cells to N. lactamica HSPC was significantly greater than

<table>
<thead>
<tr>
<th>Table 1: Proteomic analysis of Neisseria HSPC vaccines.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neisseria lactamica HSPC</td>
</tr>
<tr>
<td>Protein</td>
</tr>
<tr>
<td>Elongation factor Tu</td>
</tr>
<tr>
<td>Alcohol dehydrogenase</td>
</tr>
<tr>
<td>GroES (Hsp60)</td>
</tr>
<tr>
<td>50S Ribosomal protein L4</td>
</tr>
<tr>
<td>Universal stress protein</td>
</tr>
<tr>
<td>Elongation factor G</td>
</tr>
<tr>
<td>Peroxisidoxin 2 family protein/glutaredoxin</td>
</tr>
<tr>
<td>Ribosomal protein S7</td>
</tr>
<tr>
<td>Trigger factor</td>
</tr>
<tr>
<td>30S Ribosomal protein S9</td>
</tr>
<tr>
<td>30S Ribosomal protein S1</td>
</tr>
<tr>
<td>Homoproteocatechuate degradation operon regulator</td>
</tr>
<tr>
<td>30S Ribosomal protein L10</td>
</tr>
<tr>
<td>Identified by MetaGeneAnnotator</td>
</tr>
<tr>
<td>NifU-like protein</td>
</tr>
<tr>
<td>17S Ribosomal protein L16</td>
</tr>
<tr>
<td>Phosphate acetyltransferase</td>
</tr>
<tr>
<td>Glyceraldehyde 3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>DnaK (Hsp70)</td>
</tr>
</tbody>
</table>
Fig. 1. Neisserial HSPCs induce TLR2-mediated signalling. HEK293 cells expressing TLR2, or wildtype control HEK293 cells which lack this receptor, were cultured in media alone or stimulated for 24 h with either *N. lactamica* (Ni) HSPC, *N. meningitidis* (MenB) HSPC, the TLR4 ligand LPS or the TLR2 ligand P3C (*n* = 6 replica wells per stimulation). HEK293 TLR2 expression was confirmed by responsiveness to P3C. HSPCs from both *Neisseria* induced IL-8 secretion, only in cells expressing TLR2. ***p < 0.001 compared to media control; ANOVA.

![Fig. 1. Neisserial HSPCs induce TLR2-mediated signalling.](image)

Fig. 2. Role of immune cell TLR2 and TLR4 in the cytokine response to Neisserial HSPCs. Splenocytes from wildtype C57Bl/6 (*n* = 13), Tlr2−/− (*n* = 11) or Tlr4−/− mice (*n* = 10) were cultured for 24 h either in media alone or with *N. lactamica* (Ni) or *N. meningitidis* (MenB) HSPC. Controls were stimulated with P3C (TLR2 ligand) or LPS (TLR4 ligand). Cytokine levels in supernatants were determined by ELISA. As expected, Tlr2−/− splenocytes were non-responsive to P3C and Tlr4−/− splenocytes were non-responsive to LPS. *p < 0.05, **p < 0.01, ***p < 0.001; significantly greater than media alone (ANOVA).
Fig. 3. Immune response induced by vaccination of mice with *N. lactamica* HSPC. (a) The protein composition of *N. lactamica* HSPC was effectively unchanged by LPS-reduction, when compared by SDS-PAGE. (1) *N. lactamica* lysate; (2) *N. lactamica* HSPC; (3) *N. lactamica* HSPC, LPS-reduced. (b and c) Wildtype C57BL/6 and Myd88^−/−^ mice (n=6) were vaccinated twice with *N. lactamica* HSPC or LPS-depleted *N. lactamica* HSPC (↓LPS). Naïve controls (n=6) were left unvaccinated. Sera and spleens were collected for analysis one week after the second vaccination. (b) Serum anti-*N. lactamica* and anti-*N. meningitidis* IgG levels were quantified by ELISA. Both vaccines increased antigen-specific antibody levels compared to naïve controls (*p*<0.01, **p*<0.001; ANOVA) but titres obtained with the LPS-reduced formulation were significantly lower (ANOVA). There was no difference in IgG levels between wildtype and Myd88^−/−^ mice. (c) Splenocytes were cultured in media with or without *N. lactamica* lysate (NL) for 1 or 4 days, then cytokine levels in culture supernatants quantified by ELISA. Splenocytes from vaccinated wildtype but not Myd88^−/−^ mice secreted IFNγ in response to *N. lactamica* lysate stimulation. *p*<0.01; **p*<0.001 compared to unvaccinated control (ANOVA). n.s. = not significantly different (ANOVA).
that induced by *N. meningitidis* HSPC, suggesting a possibly greater role for TLR4 activation in the response to *N. meningitidis* HSPC.

Hence these data indicated that *Neisseria* HSPC stimulated the secretion of innate cytokines via a mechanism that was not solely dependent on either TLR2 or TLR4. This raised the possibility that these HSPCs were activating both TLR2 and TLR4, although signalling via TLR4 might play a larger role in the response induced by *N. meningitidis* HSPC.

3.3. MyD88-dependent pathways in the response to *Neisseria* HSPC vaccination

As our data suggested that *Neisseria* HSPC might activate multiple TLR pathways, we vaccinated mice lacking MyD88 (Myd88/−) with HSPC from *N. lactamica*. MyD88 is an adaptor protein essential for most TLR-dependent signalling pathways. In addition, to determine whether contaminating LPS may contribute to the
functionality of such a vaccine, we also immunized an additional group of mice with *N. lactamica* HSPC depleted of 99.5% of the endotoxin by repeated passage over an EndoTrap® HD resin column. One dimensional SDS-PAGE comparisons demonstrated that LPS depletion had no effect on the antigenic composition of *N. lactamica* HSPC (Fig. 3a).

Serum antibodies play a critical role in the protective response to pathogenic neisserial infection [4,28]. Vaccination with *N. lactamica* HSPC induced a large antigen-specific serum IgG antibody response in both wildtype and Myd88−/− mice against both *N. lactamica* and *N. meningitidis* (Fig. 3b). The levels of this antibody response in these two strains of mice was indistinguishable, indicating the serum IgG response to *N. lactamica* HSPC vaccine occurred independently of MyD88-signalling.

A substantial Neisseria-specific serum IgG response also developed in mice receiving the LPS-reduced vaccine, although in the response to *N. lactamica*, this was significantly lower in mice receiving HSPC containing reduced endotoxin (Fig. 3b). This suggests the antibody response was partially, though not entirely, adjuvanted by LPS present in the formulation. As this effect was present in both wildtype and Myd88−/− mice, any effect of LPS on the resulting antibody response occurred via a MyD88-independent mechanism.

To examine the adaptive T cell memory response induced by these vaccinations, splenocytes from these mice were stimulated in vitro with *N. lactamica* lysate. Vaccination with *N. lactamica* HSPC induced a strong memory Th1-type response as demonstrated by significant secretion of IFNγ by antigen-stimulated spleen cells from immunized wildtype mice (Fig. 3c). A similar level of response was observed in cells from mice vaccinated with the LPS-depleted formulation. Furthermore, in contrast to the antibody response, induction of the IFNγ recall response was completely dependent on MyD88 as no IFNγ was secreted by antigen-stimulated splenocytes from Myd88−/− mice. No significant IL-17A (Th17) or IL-13 (Th2) secretion was induced by *N. lactamica* stimulation of splenocytes from any group (Fig. 3c).

This experiment was repeated using *N. meningitidis* HSPC with similar results. Vaccination of wildtype mice with *N. meningitidis* HSPC also induced a very strong serum IgG antibody response. We thus quantified the IgG subclasses and found that the antibody response comprised both IgG1 and IgG2c and, as for *N. lactamica* HSPC, was not significantly different between wildtype and Myd88−/− mice (Fig. 4a).

Stimulation of splenocytes from these vaccinated mice with *N. meningitidis* HSPC induced a MyD88-dependent IFNγ response, without either IL-17A or IL-13 production (Fig. 4b), as seen with *N. lactamica* HSPC vaccination. In contrast to *N. lactamica* HSPC however, this occurred as a basal response of naive cells, with no evidence of a Th1-type memory response, as shown by a lack of increased IFNγ secretion by splenocytes from *N. meningitidis* HSPC vaccinated, as compared to naive (unvaccinated) animals (Fig. 4b).

These observations indicate that the antibody and Th1 cellular response to Neisseria HSPC vaccination were induced by two distinct mechanisms, which were MyD88-independent and dependent, respectively.

4. Discussion

While *N. lactamica* and *N. meningitidis* are related bacterial species that occupy the same niche in their human host, there is a major difference in their ability to cause disease. A number of studies have compared these organisms seeking to explain this difference in pathogenicity. At the genetic level there is some uncertainty as to whether commensal *N. lactamica* and pathogenic *N. meningitidis* differ greatly with respect to their expression of virulence factors [8,29,30]. Several previous studies have also compared the proteomes of these bacteria, however, such studies have typically focused on their outer membrane components, motivated predominantly as strategies to identify candidate vaccine antigens [7,31].

The study provides the first analysis and comparison of the HSPC, the chaperoned proteins associated with the heat shock proteins, of *N. lactamica* and *N. meningitidis* as vaccine candidates. Proteomic analysis revealed no obvious major differences between the composition of HSPC from commensal *N. lactamica* and HSPC from the pathogen *N. meningitidis* B. While only a crude comparison is possible, this does not point to any clear features that contribute to pathogenicity. This antigenic similarity importantly supports the utility of HSPCs from either *N. lactamica* or *N. meningitidis* in a meningitis vaccine. Furthermore, HSPC from both *N. lactamica* and *N. meningitidis* were shown to be capable of (1) activating cells via TLR2-dependent signalling in the human HEK293 cell line, and (2) inducing cytokine secretion by mouse immune cell, via a mechanism that requires MyD88 but is not entirely dependent on either TLR2 or TLR4. This is consistent with HSPC signalling via multiple innate receptors including both TLR2 and TLR4. It is well documented that *Neisseria* can induce TLR2-signalling via their porin PorB [32–35]. However, our proteomic analysis revealed a complete absence of porins in both HSPC, indicating TLR2 activation by these vaccines did not involve PorB.

It was interesting to note that the mouse cytokine response to *N. lactamica* HSPC was at least equivalent to that induced by *N. meningitidis* HSPC. This contrasts with the poor immune response to *N. lactamica*, relative to *N. meningitidis*, that has been reported in studies using whole bacteria [36,37]. Hence the poor immunogenicity of *N. lactamica* does not appear to be related to a lower immune-activating potential of their HSPs. HSPCs from both neisserial species induced a Th1 but not a Th2 or Th17 response and such a Th1-polarizing effect has previously also been reported for HSP from both humans and other bacteria [38,39]. In contrast, TLR4-deficient cells stimulated with *N. meningitidis* and *N. lactamica* HSPC secreted different levels of innate cytokines. This indicates important differences in the pathways by which individual HSPCs, even from closely related bacteria, activate an immune response with TLR4 appearing to play a greater role in the response to *N. meningitidis* HSPC.

Protective immunity against *N. meningitidis* is believed to be antibody mediated. While an analysis of the bactericidal activity of this response was beyond the aims of this study, in a previous experiment performed by ImmunoBiology Limited, subcutaneous vaccination of CD1 mice (*n* = 10) with 50 μg of *N. meningitidis* HSPC induced serum bactericidal activity (titre >1:512) against the homologous H44/76 strain, in contrast to no activity in sera from sham-vaccinated controls. The ability of HSPs to activate TLRs is a key mechanism by which HSPC induces an immune response to co-delivered antigens [18]. An important and surprising finding of the current study therefore, was that *Neisseria* HSPC potentially induced an effective antibody response, even without addition of an exogenous adjuvant, in MyD88-deficient mice. This result was unexpected and indicates these HSPC vaccines induce a humoral response via a currently unidentified MyD88-independent mechanism. Perhaps related to this mechanism are recent demonstrations that MyD88 is also not essential for the generation of an antibody response against adenoviral capsid protein and bacterial flagellin [40,41].

In conclusion, the type and similarity of the immune response mounted against vaccination with *N. lactamica* and *N. meningitidis* HSPC, both with respect to cell-mediated immunity and in the production of a specific antibody response, suggests that either formulation has potential utility in a meningococcal vaccine. Our examination of the mode of action of these vaccines has revealed a high level of complexity, with HSPC inducing immune responses
via a number of mechanisms, including a MyD88-dependent cellular response with subtle differences in the use of innate receptors, and a MyD88-independent mechanism that induces an antibody response without any detectable T helper cell response. Further studies are required to identify the mechanism by which HSV induces this apparently T helper cell-independent antibody response.

Conflict of interest statement

PC, MJ, LEB and CAC are/were employees of ImmunoBiology Limited, a company developing vaccines targeted to dendritic cells using heat shock proteins. The work is partially funded by ImmunoBiology Limited.

Acknowledgements

This work was supported by the Victorian Government’s Operational Infrastructure Support Program, ARC Linkage Grant LP120100226 from the Australian Research Council and ImmunoBiology Limited. PS is supported by a Senior Research Fellowship from the National Health and Medical Research Council of Australia.

References

[8] Snyder LA, Saunders NJ. The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as ‘virulence genes’. BMC Genom 2006;7:128.
[26] Shi J, Hinds J. The major facilitator superfamily: pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as virulence genes: response. BMC Genom 2006;7:129.